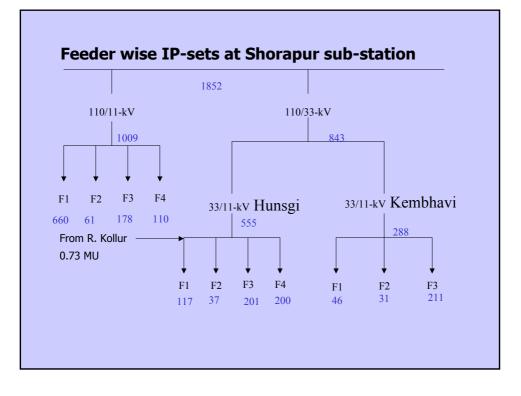
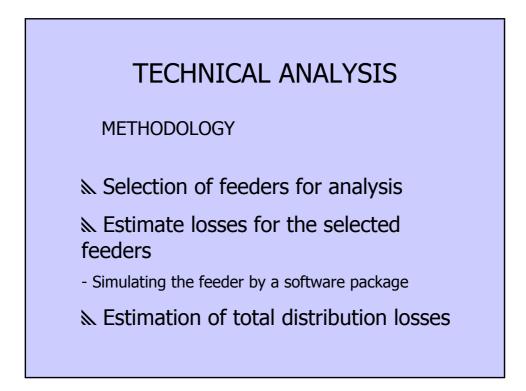
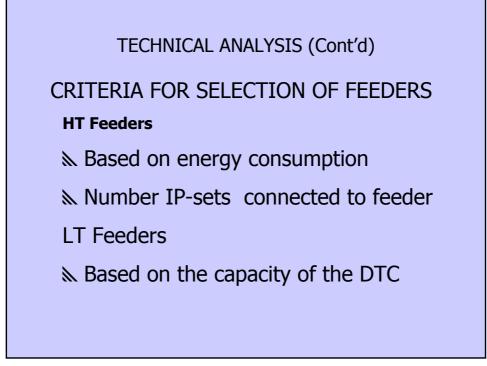
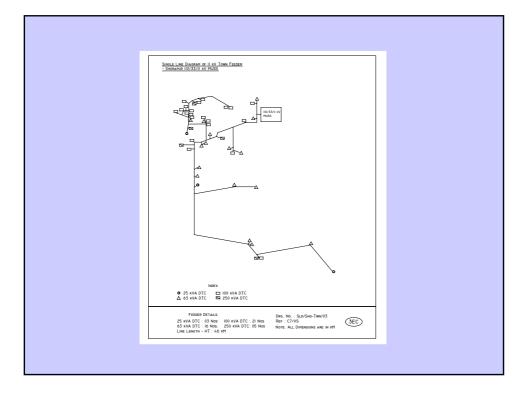
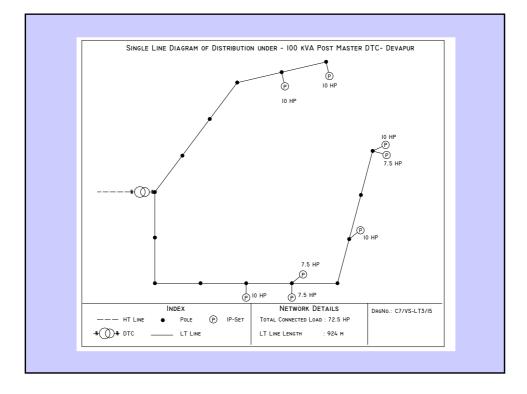

CRITERIA FOR SELECTION OF FEEDERS


Seeders delivering approximately 50 - 100 MU of Energy per annum

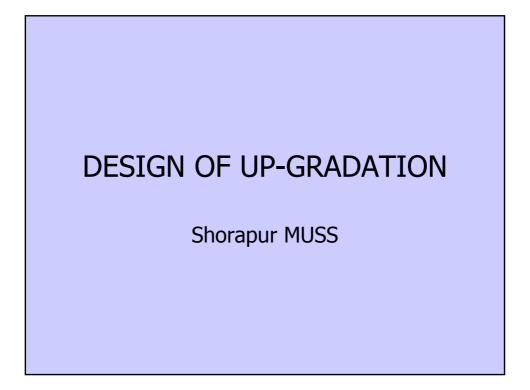

▲ Feeders having Irrigation pump-sets as major load


EXISTING SYSTEM Shorapur MUSS





TECHNICAL ANALYSIS - HT Feeder FEEDERS SELECTED FOR ANALYSIS


Feeder Name	Energy Cons'n	IP-sets
	MU	Nos.
Shorapur Town	10.2	061
Hunsgi	7.04	200
Parasanahalli	3.37	211

TECHNIZON			
TECHNICA	_ ANALYSI	5 - HI F	eeders
FINDINDS	5 FROM T	HE ANA	ALYSIS
Feeder Name	Load	Losse	s (Percent)
	kW	kW	(%)
Shorapur Town	2,846	842	(29.5)
Hunsgi	1,942	587	(30.2)
Parasanahalli	0,938	142	(15.1)
Average	1,908	523	(27.4)
Average	1,908	523	(27.4)

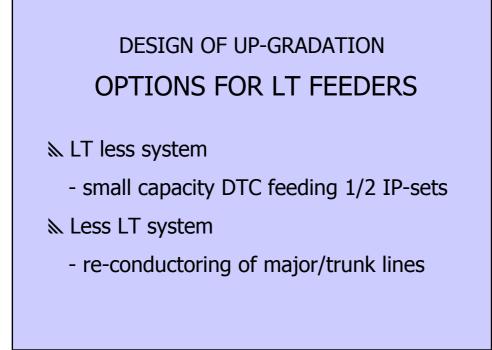
DTC Capacity	Load	Losse	es (Percent)
	kW	kW	(%)
63 kVA	35	03	(09.0)
100 kVA	70	12	(17.7)

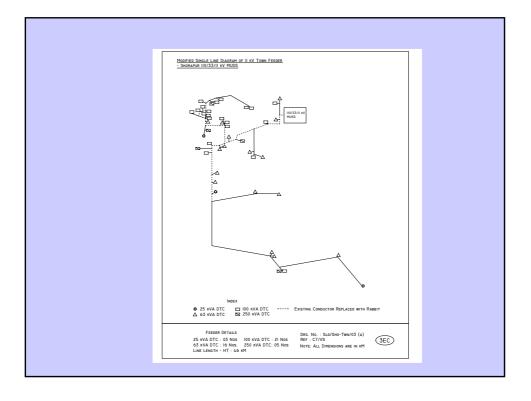
	CONCLUS	ION	
Feeder	Load	Losse	es (Percent)
	kW	kW	(%)
Average	1,908	523	(27.4)
For 11 feeders	20,988	5,753	}
Note: Anticipated results			
HT Losses include losses i	in LT network		

DESIGN OF UP-GRADATION

METHODOLOGY

▲ Analyze the results of load flow studies

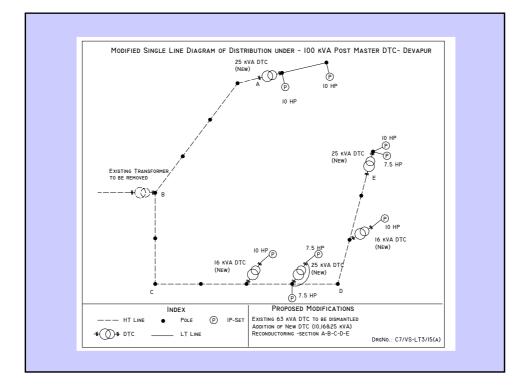

- given by software package


- techno-economically viable using different options

DESIGN OF UP-GRADATION OPTIONS FOR HT FEEDERS

➡ Bifurcation of feeders

- w.r.t load and line length
- - re-conductoring of major/trunk lines



TECHNICAL ANALYSIS - HT Feeders, MODIFIED
FINDINDS FROM THE ANALYSIS

Feeder Name	Load	Losse	s (Percent)
	kW	kW	(%)
Shorapur Town	2,292	273	(11.9)
Hunsgi	1,612	176	(10.9)
Parasanahalli	0,778	101	(13.0)
Average	1,560	183	(11.8)

Note: Options considered for HT feeder - Reconductoring & LT feeder - Less LT system

	CONCLUS	ION
Feeder	Load	Losses (Percent
	kW	kW (%)
Average	1,560	183 (11.8)
For 11 feeders	17,160	2,013

DTC Capacity	Load	Loss	es (Percent)
	kW	kW	(%)
63 kVA	33	01	(3.0)
100 kVA	61	02	(3.3)

FINANCIAL ANALYSIS

Shorapur MUSS

PROJECTED COST ESTIMATE

Cost estimate for 3 feeders:

	Qty	UnitCost	Amount
		Lakhs	Lakhs
HT re-conductoring	: 81.7	: 0.55	:044.94
New DTC	: 568	: 0.55	:312.40
LT - HT conversion	: 76.5	: 0.30	:022.95
Total investment			: 380.29
Average investment per feeder			: 126.76

Net Investment for 11 feeders in Rs. Lakhs

: 1,394.39

PROJECTED SAVINGS & PAYBACK

(For network up-gradation only)

Present energy flow	: 55.6 MU
Modified energy flow	: 42.8 MU
Anticipated savings	: 12.8 MU / annum
Estimated energy usage	: 3600 hours / annum
Savings in Rs. Lakhs	: 321.12
Net Investment for Up	-gradation : 1,394.4 Lakhs
Payback in Years	: 4. 4
rayback in rears	1 71 7
rayback in rears	

(For IP-sets replaceme	nt only)	
Pump set Replacement C		
Number of Existing pumps	1852	Nos
Existing Average HP Rating	7.5	HP
Running Hours	3600	Hr
Total Consumption	37.3	MU
Existing Efficiency	20	%
Quantity of Pumps replaced	50	%
Modified Average HP Rating	5	HP
Number of Pumps replaced	926	Nos
Efficiency of new pumps	40	%
Modified Consumption	31.1	MU
Savings in MU	6.2	MU
Investment Calculations for Pumpset re	eplacement	
Number of Pumps to be replaced	926	Nos
Cost of each Pump	20,000	Rs.
Total Investment	185	Lakhs
Energy savings due to pump replacement	6.2	MU
Energy savings @ 2.5 Rs/kWh	155.4	Lakhs
Payback period	12	vears

PROJECTED INVESTMENT & PAYBACK

(For Network up-gradation & IP-sets replacement)

Investment for Network Upgradation	1394.4	Lakhs
Investment for pumpset replacement	185	Lakhs
Total Investment	1580	Lakhs
Savings due to pump replacement	155.4	Lakhs
Savings due to Network upgradation	321.1	Lakhs
Total Savings	477	Lakhs
Payback Period	3.3	Years

CONCLUSION

The study reveals that a financially attractive solution for loss reduction exists in this area

★ the avg. losses in the feeders is estimated around 15.9 MU (27.4 %) & this can be reduced to 4.73MU, for revised energy flow of 42.8 MU. The saved energy of 12.84 MU sold to KPTCL at Rs. 2.50 will generate a revenue of 321.12 Lakhs Per year

the investment for the project would be about 1,394.4 Lakhs with a simple pay back of 4.4 Years.

CONCLUSION (Cont'd)

- the payback period of 4.4 years is acceptable, with only network up-gradation attempted.
- Sy attempting only IP-sets replacement (50%) with energy efficient models, the payback period of about 1.2 years can be achieved
- The payback period can be reduced to 3.3 years by combining network up-gradation & IP-sets replacement.